If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+4=93
We move all terms to the left:
6n^2+4-(93)=0
We add all the numbers together, and all the variables
6n^2-89=0
a = 6; b = 0; c = -89;
Δ = b2-4ac
Δ = 02-4·6·(-89)
Δ = 2136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2136}=\sqrt{4*534}=\sqrt{4}*\sqrt{534}=2\sqrt{534}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{534}}{2*6}=\frac{0-2\sqrt{534}}{12} =-\frac{2\sqrt{534}}{12} =-\frac{\sqrt{534}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{534}}{2*6}=\frac{0+2\sqrt{534}}{12} =\frac{2\sqrt{534}}{12} =\frac{\sqrt{534}}{6} $
| 5(x+3)-4(x+2)=2 | | 2x1=1/4 | | 7x=2x-8 | | Y=x/3x-1 | | 6(x+10=5x | | k6+6=-73 | | 5(x+4)=2x | | 5(x+4=2x | | 6x-5+x+10=180 | | 15.46r+28.8=240.702 | | -3{n+4}=6 | | -7/2x-4/3=1/2x | | 25/56=x | | x^2-4x+11=-6 | | 12^(y+7)=11 | | k^2-4k+11=-6 | | -9-4(6x-2)=-10 | | 7x-8=8+14x-3+3x | | 7x-8=8+3x-9+3x | | 7x-8=8+6x-2+3x | | 7x-8=8+3x-14+3x | | 7x-8=8+x-3+143x | | 7x-8=8+1x-1+3x | | 7x-8=8+14x-28+3x | | 4(-3x-12)=-6(-2+2x) | | 7x-8=8+4x-10+3x | | 5x+-8=-3x+10 | | 7x-8=8+12x-5+3x | | 5x^2-20x-55=5 | | 9975+0.0625/1.0025=t | | 5+t=3/4 | | x+8=3x+7 |